Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex.

نویسندگان

  • Michael Beierlein
  • Barry W Connors
چکیده

Layer 6 is the main source of neocortical connections back to specific thalamic nuclei. Corticothalamic (CT) systems play an important role in shaping sensory input, but little is known about the functional circuitry that generates CT activity. We recorded from the two main types of neurons in layer 6, regular-spiking (RS; pyramidal neurons) and fast-spiking (FS; inhibitory interneurons) cells and compared the physiological properties of different excitatory inputs. Thalamic stimulation evoked two monosynaptic inputs with distinct properties: suspected thalamocortical (TC) synaptic events had short latencies, short-term synaptic depression, and paired-pulse responses that suggested subnormal axonal conduction. A second group of synaptic responses likely originated from intracortical collaterals of CT cells that were antidromically activated from the thalamus. These intracortical responses had longer latencies, short-term synaptic facilitation, and were transmitted by axons with supernormal conduction. Suspected TC inputs to FS cells had significantly larger amplitudes than those onto RS cells. Dual recordings from neighboring neurons in layer 6 revealed both facilitating and depressing synaptic connections; the depressing synapses were probably formed by layer 6 cells that do not project to the thalamus, and thus were not sampled by thalamic stimulation. We conclude that layer 6 neurons integrate a variety of inputs with distinct temporal dynamics that are determined by the presynaptic cell type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two dynamically distinct inhibitory networks in layer 4 of the neocortex.

Normal operations of the neocortex depend critically on several types of inhibitory interneurons, but the specific function of each type is unknown. One possibility is that interneurons are differentially engaged by patterns of activity that vary in frequency and timing. To explore this, we studied the strength and short-term dynamics of chemical synapses interconnecting local excitatory neuron...

متن کامل

Layer-specific experience-dependent rewiring of thalamocortical circuits.

Thalamocortical circuits are central to sensory and cognitive processing. Recent work suggests that the thalamocortical inputs onto L4 and L6, the main input layers of neocortex, are activated differently by visual stimulation. Whether these differences depend on layer-specific organization of thalamocortical circuits; or on specific properties of synapses onto receiving neurons is unknown. Her...

متن کامل

Properties of convergent thalamocortical and intracortical synaptic potentials in single neurons of neocortex.

We explored differences in the properties of convergent afferent inputs to single neurons in the barrel area of the neocortex. Thalamocortical slices were prepared from mature mice. Recordings were made from neurons in layer V, and either thalamocortical afferents or horizontal intracortical axons were stimulated. Monosynaptic EPSPs from both sources had latencies shorter than 1.8 msec and low ...

متن کامل

Cortex is driven by weak but synchronously active thalamocortical synapses.

Sensory stimuli reach the brain via the thalamocortical projection, a group of axons thought to be among the most powerful in the neocortex. Surprisingly, these axons account for only approximately 15% of synapses onto cortical neurons. The thalamocortical pathway might thus achieve its effectiveness via high-efficacy thalamocortical synapses or via amplification within cortical layer 4. In rat...

متن کامل

Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability

Thalamocortical (TC) synapses carry information into the neocortex, but they are far outnumbered by excitatory intracortical (IC) synapses. We measured the synaptic properties that determine the efficacy of TC and IC axons converging onto spiny neurons of layer 4 in the mouse somatosensory cortex. Quantal events from TC and IC synapses were indistinguishable. However, TC axons had, on average, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2002